2014년 2월 26일 수요일

2) The magic identity

Trigonometry is the art of doing algebra over the circle. So it is a mixture of algebra and geometry. The sine and cosine functions are just the coordinates of a point on the unit circle. This implies the most fundamental formula in trigonometry (which we will call here the magic identity)

displaymath91
where tex2html_wrap_inline93 is any real number (of course tex2html_wrap_inline93 measures an angle).
Example. Show that
displaymath97

Answer. By definitions of the trigonometric functions we have
displaymath99
Hence we have
displaymath101
Using the magic identity we get
displaymath103
This completes our proof.
Remark. the above formula is fundamental in many ways. For example, it is very useful in techniques of integration.
Example. Simplify the expression
displaymath105

Answer. We have by definition of the trigonometric functions
displaymath107
Hence
displaymath109
Using the magic identity we get
displaymath111
Putting stuff together we get
displaymath113
This gives
displaymath115
Using the magic identity we get
displaymath117
Therefore we have
displaymath119




Example. Check that
displaymath61

Answer. Use the definitions of the trigonometric functions to get
displaymath63
Hence we have
displaymath65
Using the magic identity we get
displaymath67
This completes our proof.



Example. Simplify the expression
displaymath69

answer. Using algebra, we have
displaymath71
Hence
displaymath73
which gives
displaymath75
Since tex2html_wrap_inline77 , we get
displaymath79



The following identities are very basic to the analysis of trigonometric expressions and functions. These are called Fundamental Identities

Reciprocal identities


displaymath161


Pythagorean Identities

displaymath162

Quotient Identities

displaymath163

S.O.S.mathmatics

댓글 없음:

댓글 쓰기